Synthesis and Tautomerism of Porphyrin β-Ketoesters

Andrei N. Kozyrev, Alexander N. Nizhnik, and Andrei F. Mironov*
M. V. Lomonosov Institute of Fine Chemical Technology, Moscow 117571, USSR

Abstract

Deuteroporphyrin and cytodeuteroporphyrin β-ketoester derivatives have been prepared by condensation of the appropriate porphyrin acid chloride with ethyl t-butyl sodiomalonate or with the magnesium chelate of t-butyl β-oxopropionate. These porphyrins are enolised, and NMR results indicate that they consist of about 35% of the enol and 65% of the keto form.

Porphyrins bearing β-oxopropionate side chains have been of interest in recent years. ${ }^{1-3}$ Porphyrins with reduced side chains (i.e. possessing α-hydroxypropionate groups) play an important role in the formation of the vinyl substituents in the biosynthesis of haem. ${ }^{4}$ A porphyrin β-ketoester was used by Kenner and his colleagues in an elegant procedure in which a fused cyclopentane ring system was obtained by a photoinduced cyclisation of the thallium(III) enolate complex of the β ketoester. ${ }^{3}$ Intermediate benzyl β-oxopropionate porphyrins have been used in the synthesis of deoxophylloerythroaetioporphyrin and harderoporphyrin by an Australian group. ${ }^{5}$ Our studies on pyrrole β-ketoesters have shown that this substituent can be useful for the attachment of the terpenoid side chain at the active methylene group of the β-ketoester substituent. ${ }^{6 a}$

Synthesis of Deuteroporphyrin β-Ketoesters.-The initial synthetic plan had as its target molecule 3-carboxy-8vinyldeuteroporphyrin IX dimethyl ester (7) which was to be used as a model porphyrin for the introduction of the β oxopropionate side chain (Scheme 1). This porphyrin was chosen since it is related to a naturally occurring porphyrin and is easily available by a stepwise synthesis devised in our laboratory. ${ }^{7}$ Condensation of equimolar quantities of the $5,5^{\prime}-$ unsubstituted dipyrrolylmethane (1) with 3-ethoxycarbonyl-5-formyl-2,4-dimethylpyrrole (2) in a vigorously stirred solution in dry diethyl ether by slow addition of HBr gave the tripyrrene (3) in 96% yield. A second condensation with the formylpyrrole (4) was then achieved in acetic acid with an excess of HBr to give in 95% yield the biladiene-a,c (5). The latter compound was cyclised in the presence of a 2 -fold excess of bromine and a 5 fold excess of iodine. ${ }^{6 b}$ The porphyrin (6) was obtained in 54% yield. This yield is regarded as satisfactory in view of the known difficulties in the cyclisation of linear tetrapyrroles possessing electron-withdrawing groups on the terminal ring. ${ }^{7,8 a}$

The product of cyclisation was subjected to HPLC using a reversed-phase column (Lichrosorb ODS, $10 \mu \mathrm{~m}$) with acetonitrile as eluant (flow rate $2 \mathrm{ml} / \mathrm{min}$) and was found to be a mixture of two porphyrins [with retention times (t_{R}) of 6.7 and 8.1 min (determined by absorbance at 400 nm)] in a ratio $c a$. $2: 1$. Mass spectrometry showed the presence of 8 -(2-iodoethyl) derivative ($6 \mathbf{b}$) along with the required 2 -bromoethyl substituted porphyrin (6a). A similar result had been obtained during the cyclisation of a biladiene-a,c bearing a 2 -bromoethyl group on heating in o-dichlorobenzene with iodine as oxidant. ${ }^{8 b}$ The components were identified by treatment with sodium bromide in boiling chloroform, which led to the increase of one component at the expense of the other.

Porphyrins ($6 a, b)$ were used without separation for the synthesis of 3-carboxy-8-vinyldeuteroporphyrin IX (7) by treatment with KOH in boiling pyridine followed by esterification of the propionic acid groups with 3% sulphuric acid in methanol (86% yield). This porphyrin acid has been synthesised inde-

(5)

(6)
(7)
a; $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$
b; $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2}$

Scheme 1.

pendently by the Australian group ${ }^{9}$ using the bilene- b method although the total yield was lower.
In order to obtain the porphyrin β-ketoester the carboxyporphyrin (7) was treated with thionyl chloride and the resulting acid chloride (8a) was condensed with the sodium

 sеч әиечәшן К

${ }^{-} \varepsilon$ วแนวัวS

-(ә१®

 ग!!

ог дuәn!̣!̣я
 - д u!

 -ஏ IKinq-i e su!̣eәq (p8) u! ши!

-ppo! \% \% $\% 8$ u! pәu!̣elqo

81	91	$N^{s} a^{s}{ }^{\text {d }}$
$L Z$	¢Z	O- ${ }^{2}$ (ع) ${ }^{\text {a }}$)
07	E£	${ }^{\text {¢ }}$ (วQ)
てt	$8 £$	${ }^{9} \mathrm{a}^{9}$ ว
SL	S8	
O. 0ε	O. 0	1uәл!os
	\%	

-sluanjos snourga uị (2g)

"\% دuryss

(8)

(13)
a; $R^{1}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{R}^{2}=\mathrm{CHO}, \mathrm{R}^{3}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$ b; $R^{1}=\mathrm{CO}_{2} \mathrm{H}, \mathrm{R}^{2}=\mathrm{CHO}, \mathrm{R}^{3}=\mathrm{CH}=\mathrm{CH}_{2}$ c; $\mathrm{R}^{1}=\mathrm{COCl}, \mathrm{R}^{2}=\mathrm{CH}^{\prime}, \mathrm{R}^{3}=\mathrm{CH}=\mathrm{CH}_{2}$

e; $\mathrm{R}^{1}=\mathrm{COCH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{R}^{2}=\mathrm{CH}^{\prime} \mathrm{R}$
f; $\mathrm{R}^{1}=\mathrm{COCH}_{2} \mathrm{CO}_{2} \mathrm{Et}, \mathrm{R}^{2}=\mathrm{CHO}, \mathrm{R}^{3}=\mathrm{CH}=\mathrm{CH}_{2}$
porphyrin. ${ }^{10}$ The base peak at $m / z 613$ was assigned to the loss of the entire β-ketoester group, and another peak at $m / z 655$ was attributed to $M^{+}-\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}$. As for the model β-ketoester (8c) the NMR spectrum of the porphyrin (12d) showed enolisation, $c a .60 \%$ of keto form being present in chloroform at room temperature.

Attempts to introduce a formyl group into the unsubstituted 18 position by treatment of the copper(II) complex of the porphyrin (12d) with the Vilsmeier reagent $\left[\mathrm{POCl}_{3}\right.$-dimethylformamide (DMF)] failed because of the lability of the β ketoester side chain. The use of dichloromethyl methyl etherSnCl_{4} as the formylating reagent ${ }^{11}$ was also unsuccessful.

The problem of formylation can be solved by introducing this group before the β-ketoester group. This was achieved in
our recent synthesis of 8-(2-bromoethyl)-3-ethoxycarbonyl-18formylcytodeuteroporphyrin dimethyl ester (13a). ${ }^{1,13}$ The formyl group was introduced by an intramolecular rearrangement at the stage of cyclisation of 1,19 -dimethylbiladiene-a, c with the 18 position unsubstituted in DMF in the presence of CuCl_{2} at room temperature. ${ }^{13}$ After routine chemical transformation 3 -carboxy-18-formyl-8-vinylcytodeuteroporphyrin dimethyl ester (13b) was achieved in good overall yield ${ }^{13}$ by a simpler synthetic scheme than that employed by the Australian group. ${ }^{14}$

Porphyrin (13b) was protected as its acetal with 2-methyl-pentane-2,4-diol and was then treated with thionyl chloride to give the acid chloride (13c). The latter was condensed with ethyl t-butyl sodiomalonate followed by treatment with TFA to remove the t-butoxycarbonyl group and the protecting acetal, and the required porphyrin β-ketoester (13f) was obtained in 76% yield.

At 250 MHz the ${ }^{1} \mathrm{H}$ NMR spectrum of (13f) includes both keto (66%) and enol (34%) forms, as observed for the porphyrin β-ketoesters already described. A broadened OH signal at δ 13.5 , a singlet due to the olefinic proton at $\delta c a .6 .1$, and a singlet due to the enol tautomer were present. The signal of the $\mathbf{C H}_{2}$ protons of the keto form was observed as a singlet at $\delta 4.56$. Enolisation caused splitting of the formyl signal at $\delta 11.32$ and of the meso-H signals so that it was difficult to interpret this part of the spectrum.
The synthesis of the formylcytodeuteroporphyrin β-ketoester (13f) opens the way to a study of synthetic approaches to porphyrin a via alkylation of the β-ketoester side chain. Our observations on the keto-enol tautomerism of porphyrin β ketoesters using ${ }^{1} \mathrm{H}$ NMR spectroscopy could be useful in finding the experimental conditions for such alkylations.

Experimental

M.p.s were determined on a Kofler apparatus. UV-visible spectra were recorded for solutions in chloroform (porphyrins) and in $1 \% \mathrm{HBr}$ in chloroform on a Hitachi EPS-3T spectrophotometer. IR spectra were recorded on a Perkin-Elmer 257 instrument. NMR spectra of porphyrins were recorded on Bruker-Physic WH 90 (90 MHz) and on Bruker-WM 250 (250 $\mathbf{M H z}$) instruments for solutions in deuteriochloroform unless otherwise stated. Mass spectra were recorded on a Varian MAT731 mass spectrometer (electron impact). HPLC of porphyrins was performed on a Spectra-Physics 8000 machine with SP 8310 detector.

17-(2-Bromoethyl)-2-ethoxycarbonyl-8,12-bis(2-methoxy-carbonylethyl)-1,3,7,13,18-pentamethyl-10,24-dihydro-21Hbiline Hydrobromide (5).-Tripyrrin hydrobromide ${ }^{7}$ (3) (160 $\mathrm{mg})$ and the formylpyrrole ${ }^{13}(4)(62 \mathrm{mg})$ were stirred in ethanol $(15 \mathrm{ml})$ and methanol (1.5 ml) with aqueous hydrobromic acid $(40 \%, 0.2 \mathrm{ml})$ for 20 min at $20^{\circ} \mathrm{C}$. Dry diethyl ether (15 ml) was added dropwise and the precipitate was filtered off, washed with ether, and dried to yield the title biladiene ($217 \mathrm{mg}, 97 \%$) as deep purple crystals, m.p. $268-270^{\circ} \mathrm{C}$ (decomp.) (Found: C, $50.2 ; \mathrm{H}$, 5.2; $\mathrm{N}, 6.35 . \mathrm{C}_{37} \mathrm{H}_{44} \mathrm{BrN}_{4} \mathrm{O}_{6} .2 \mathrm{HBr}$ requires $\mathrm{C}, 50.4 ; \mathrm{H}, 5.2 ; \mathrm{N}$, 6.3%); $v_{\max }(\mathrm{KBr}) 3190,1740$, and $1620 \mathrm{~cm}^{-1} ; \lambda_{\max }\left(\mathrm{CHCl}_{3}\right)$ (relative absorbance) 453 and $520 \mathrm{~nm}(1: 2.8)$.

8-[2-Bromo(iodo)ethyl]-3-ethoxycarbonyl-13,17-bis(2-

 methoxycarbonylethyl)-2,7,12,18-tetramethylporphyrin (6).-A solution of the foregoing biline dihydrobromide (5) $(100 \mathrm{mg})$, bromine (35 mg), and iodine $(120 \mathrm{mg})$ in o-dichlorobenzene (100 ml) was heated under reflux for 20 min . After cooling to room temperature the solution was treated with triethylamine (0.5 ml) and filtered through an alumina column ($60 \times 20 \mathrm{~mm}$ diam.), which was washed with light petroleum and then withchloroform to elute the product. The solvent was evaporated off and the residue was chromatographed on a silica column ($150 \times 15 \mathrm{~mm}$ diam.), with chloroform as eluant, to give the title porphyrin ($6 \mathrm{a}, \mathrm{b}$) $\left(48 \mathrm{mg}, 54 \%\right.$), m.p. $203-206{ }^{\circ} \mathrm{C}$ (from chloroform-methanol); $v_{\max }(\mathrm{KBr}) 3340,1730$, and $1700 \mathrm{~cm}^{-1}$; $\lambda_{\max }\left(\mathrm{CHCl}_{3}\right)$ (relative absorbance) 409 (Soret), 507, 545, 574, and $621 \mathrm{~nm}(1.0: 1.2: 0.6: 0.2) ; \delta\left(\mathrm{CDCl}_{3}\right) 11.49(1 \mathrm{H}, \mathrm{s}$, meso-H), $11.40(2 \mathrm{H}, \mathrm{s}$, meso-H), $10.72(1 \mathrm{H}, \mathrm{s}$, meso-H), $4.98(2 \mathrm{H}$, q, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.65\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right), 4.45(4 \mathrm{H}, \mathrm{t}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}$), $3.98\left(2 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right), 3.66\left(18 \mathrm{H}, \mathrm{CH}_{3}\right), 3.22$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}$), and $1.38\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}$ (relative intensity) $792\left(M^{+}, I, 2\right), 718\left(M^{+},{ }^{81} \mathrm{Br}, 12\right), 716\left(M^{+}\right.$, $\left.{ }^{79} \mathrm{Br}, 10\right), 636(59), 635(36), 629$ (42), 628 (31), 613 (18), 606 (33), 605 (28), 601 (14), 578 (32), and 574 (41).

3-Carboxy-13,17-bis(2-methoxycarbonylethyl)-2,7,12,18-tetramethyl-8-vinylporphyrin (7).-A solution of the foregoing porphyrin (6) (50 mg) in pyridine (50 ml) was heated under reflux under nitrogen for 5 min , diluted carefully with water (10 ml), and heated under reflux for a further 5 min . Aqueous KOH $(3 \% ; 10 \mathrm{ml})$ was added. The mixture was then heated under reflux for a further 2 h , aqueous acetic acid ($30 \% ; 10 \mathrm{ml}$) was added followed by water (75 ml), and the mixture was concentrated to 25 ml by evaporation. The precipitate formed was filtered off, washed with water, and dried. The precipitate was dissolved in methanolic sulphuric acid ($3 \% ; 100 \mathrm{ml}$) and the filtered solution was left overnight at room temperature. Water (200 ml) was added and the product was extracted with chloroform ($3 \times 100 \mathrm{ml}$). The combined extracts were washed with water ($3 \times 100 \mathrm{ml}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by chromatography on a silica column ($60 \times 20 \mathrm{~mm}$ diam.) and then recrystallised from chloroformbenzene to give the porphyrin acid (7) ($38 \mathrm{mg}, 85 \%$), m.p. $>300^{\circ} \mathrm{C}$ (Found: C, 68.8; H, 5.8; N, 9.0. Calc. for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{6}: \mathrm{C}, 69.1 ; \mathrm{H}, 6.0 ; \mathrm{N}, 9.2 \%$); $\lambda_{\text {max }}$ (relative absorbance) 410.5 (Soret), $510,548,577$, and 633 nm (1.0:0.91:0.65:0.22) [lit., ${ }^{9} 410.5$ (Soret), 510, 548, 578, and 635 nm (1.0:0.90:0.64:0.20)].

3-(2-Ethoxycarbonyl-1-oxo-2-butyloxycarbonylethyl)-13,17-bis(2-methoxycarbonylethyl)-2,7,12,18-tetramethyl-8-vinylporphyrin (8b).-The foregoing porphyrin acid (7) (30 mg) in $\mathrm{SOCl}_{2}(5 \mathrm{ml})$ was stirred at room temperature in darkness for 1 h. The solution was evaporated and the residue was dissolved in dry tetrahydrofuran (THF) (25 ml). A solution of ethyl t-butyl sodiomalonate [from sodium hydride (220 mg) and ethyl tbutyl malonate (1.3 g)] in dry THF (20 ml) was added, the solution was stirred vigorously for 1 h at room temperature. Aqueous hydrochloric acid ($0.01 \mathrm{~m} ; 200 \mathrm{ml}$) was added, and the porphyrin was extracted with chloroform ($3 \times 50 \mathrm{ml}$). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated. The residue was chromatographed on silica and then recrystallised from chloroform-light petroleum to give the title porphyrin (8 b) ($34 \mathrm{mg}, 88 \%$) as plates, m.p. $130-132{ }^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) 3325,1700$, and $1680 \mathrm{~cm}^{-1}$; $\lambda_{\max }\left(\mathrm{CHCl}_{3}\right)$ (relative absorbance) 412 (Soret), 508, 543, 575, and 628 nm (1.0:0.85:0.62:0.21); $\delta\left(\mathrm{CDCl}_{3}\right) 10.60,9.82,9.80,9.71$ (each 1 H , s, meso-H), $8.23\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.28\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $4.95(1 \mathrm{H}, \mathrm{s}, \mathrm{COCH}), 4.36\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)$, 3.68-3.54 ($18 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}$), $3.23\left(4 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 1.56(3 \mathrm{H}$, $\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), and $1.40\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{C}\right)$.

3-(2-Ethoxycarbonyl-1-oxoethyl)-13,17-bis(2-methoxy-

 carbonylethyl)-2,7,17,18-tetramethyl-8-vinylporphyrin (8c).The foregoing porphyrin (8 b) (30 mg) was treated with TFA (5 ml) at room temperature for 15 min . The excess of TFA was removed in vacuo and the residue was dissolved in chloroform $(50 \mathrm{ml})$, washed with water $(3 \times 300 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$,and evaporated. The porphyrin was purified by column chromatography on silica to give the title porphyrin (8c) $(25 \mathrm{mg}$, 92%) as purple plates, m.p. $251-252^{\circ} \mathrm{C}$ (from chloroformmethanol) (Found: $\mathrm{C}, 68.7 ; \mathrm{H}, 6.1 ; \mathrm{N}, 7.9 . \mathrm{C}_{39} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{7}$ requires $\mathrm{C}, 69.0 ; \mathrm{H}, 6.2 ; \mathrm{N}, 8.2 \%) ; v_{\max }(\mathrm{KBr}) 3340,1720$, and $1680 \mathrm{~cm}^{-1}$; $\lambda_{\max }\left(\mathrm{CHCl}_{3}\right)$ (relative absorbance) 413 (Soret), 511, 548, 578, and $634 \mathrm{~nm}(1.0: 0.94: 0.68: 0.22) ; \delta\left(\mathrm{CDCl}_{3}\right) 13.41(\mathrm{~s}, \mathrm{OH}), 10.61$, 10.45, 9.96, 9.86, 9.78, 9.75 ($4 \mathrm{H}, \mathrm{m}$, meso-H), $8.20(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 6.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.07(\mathrm{~s}, \mathrm{CH}=\mathrm{C}-\mathrm{OH}), 4.60(\mathrm{~s}$, $\mathrm{COCH}_{2} \mathrm{CO}_{2} \mathrm{Et}$), $4.34\left(6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right.$), $3.66-$ $3.52\left(18 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 3.21\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)$, and $1.52(3 \mathrm{H}$, $\mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}$).

13,17-Bis(2-methoxycarbonylethyl)-2,7,12,18-tetramethyl-3-

 (1-oxo-2-t-butyloxycarbonylethyl)-8-vinylporphyrin (8d).--In a similar manner to that described for (8b) the porphyrin acid (7) $(20 \mathrm{mg})$ and t -butyl magnesiomalonate [prepared from $\mathbf{M g}$ (200 mg) and t-butyl malonate (0.8 g)] gave the porphyrin β-oxoester (8d) $(16 \mathrm{mg}, 73 \%)$, m.p. $206-210^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) 3340,1725$, and $1690 \mathrm{~cm}^{-1} ; \lambda_{\max }\left(\mathrm{CHCl}_{3}\right)$ (relative absorbance) 413 (Soret), 511 , 548,577 , and $633 \mathrm{~nm}(1.0: 0.92: 0.67: 0.2) ; \delta\left(\mathrm{CDCl}_{3}\right) 13.6(\mathrm{~s}$, $\mathrm{OH}), 10.84,10.74,9.99\left(\mathrm{~m}\right.$, meso-H), $8.28\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.4$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.03(\mathrm{~s}, \mathrm{CH}=\mathrm{C}-\mathrm{OH}), 4.66\left(\mathrm{~s}, \mathrm{COCH}_{2}\right), 4.32$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 3.81-3.66\left(18 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 3.23(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}$), and $1.41\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Me}_{3} \mathrm{C}\right.$).3-(2-Ethoxycarbonyl-1-oxoethyl)-13,17-bis(2-methoxy-carbonylethyl)-2,7,12,18-tetramethyl-8-vinylporphyrinatozinc (9).-A solution of the porphyrin β-ketoester (8 c) $(15 \mathrm{mg})$ in chloroform (15 ml) was refluxed with zinc acetate dihydrate for 10 min . The mixture was washed with water ($3 \times 50 \mathrm{ml}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and chromatographed on silica to give the zinc complex (9) as pink plates, m.p. 268-270 ${ }^{\circ} \mathrm{C}$ (from chloroformmethanol); $\delta\left(\mathrm{CDCl}_{3}\right) 13.36(\mathrm{~s}, \mathrm{OH}), 9.95,9.89,9.16,9.01,8.90$ (m. meso -H), $7.6\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $6.00(\mathrm{~s}, \mathrm{CH}=\mathrm{C}-\mathrm{OH}), 4.61\left(\mathrm{~s}, \mathrm{COCH}_{2}\right), 4.55-4.20(6 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 3.50-3.20\left(18 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 2.9(4 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}$), and $1.68\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

8-(2-Acetoxyethyl)-3-carboxy-13,17-bis(2-methoxycarbonyl-ethyl)-2,7,12-trimethylporphyrin (12a).--In a manner similar to that described for the porphyrin (7) the porphyrin ester (11) ${ }^{8 b}$ (50 mg) was converted to the porphyrin acid (12a) ($35 \mathrm{mg}, 78 \%$) and obtained as fine crystals (from chloroform-methanol), m.p. $>300^{\circ} \mathrm{C}$ (Found: C, 65.9; $\mathrm{H}, 5.95 ; \mathrm{N}, 8.5 . \mathrm{C}_{36} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{8}$ requires $\mathrm{C}, 66.2 ; \mathrm{H}, 5.8 ; \mathrm{N}, 8.6 \%)$; $\mathrm{v}_{\text {max }}(\mathrm{KBr}) 3325,1700$, and $1680 \mathrm{~cm}^{-1}$; $\lambda_{\max }$ (relative absorbance) 405 (Soret), 504, 539, 574, and 625 nm (1.0:0.89:0.53:0.2).

3-(2-Ethoxycarbonyl-1-oxoethyl)-13,17-bis(2-methoxy-

 carbonylethyl) -2,7,12-trimethylporphyrin (12d).-The same procedure which was outlined for (8c) was used to convert the porphyrin acid (12a) (30 mg) to the porphyrin β-ketoester (12d) ($27 \mathrm{mg}, 79 \%$), m.p. $142-143{ }^{\circ} \mathrm{C}$ (from chloroform-hexane) (Found: $\mathrm{C}, 66.8 ; \mathrm{H}, 5.85 ; \mathrm{N}, 7.7 . \mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{9}$ requires $\mathrm{C}, 66.5$; $\mathrm{H}, 6.0 ; \mathrm{N}, 7.7 \%) ; \mathrm{v}_{\max }(\mathrm{KBr}) 3340,1720$, and $1680 \mathrm{~cm}^{-1} ; \lambda_{\max }$ 406 (Soret) 504, 540, 572, and 626 nm (1.0:0.94:0.6:0.18); $\delta\left(\mathrm{CDCl}_{3}\right) 13.48(\mathrm{~s}, \mathrm{OH}), 10.75,10.61,10.05(\mathrm{~m}$, meso-H), $9.18(1$ $\mathrm{H}, \mathrm{s}, \beta-\mathrm{H}), 6.12(\mathrm{~s}, \mathrm{CH}=\mathrm{C}-\mathrm{OH}), 4.69\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 4.60(\mathrm{~s}$, $\mathrm{CH}_{2} \mathrm{CO}$), 4.48 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAc}$), $3.80-3.52$ ($15 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}$), 3.31 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OAc}$), $2.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}\right.$), and $1.78\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / z$ (relative intensity) $655\left(M^{+}-\mathrm{CO}_{2} \mathrm{C}_{2} \mathrm{H}_{5}, 10 \%\right.$), 615 (30), 614 (80), 613 $\left(M^{+}-\mathrm{COCH}_{2} \mathrm{CO}_{2} \mathrm{Et}, 100\right), 581$ (10), 554 (14), 540 (34), 481 (14), 407 (10), and 397 (12).3-(2-Ethoxycarbonyl-1-oxoethyl) 13,17-bis(2-methoxycar-bonylethyl)-2,7,12-trimethyl-8-vinylporphyrin (13f).-In a simi-
lar manner to that described for the porphyrin (8c), the porphyrin acid (13b) gave the β-ketoester (13f) (76%); $v_{\max }(\mathrm{KBr}) 3335,1720$, and $1680 \mathrm{~cm}^{-1} ; \lambda_{\max }\left(\mathrm{CHCl}_{3}\right)$ (relative absorbance) 428 (Soret), 519, 554, 586, and 640 nm (1.0:0.79:0.57:0.22); $\delta\left(\mathrm{CDCl}_{3}\right) 13.50(\mathrm{~s}, \mathrm{OH}), 11.32(1 \mathrm{H}, \mathrm{d}$, CHO), $10.89,10.77,10.43(\mathrm{~m}$, meso- H$), 8.19\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $6.36\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.06(\mathrm{~s}, \mathrm{CH}=\mathrm{C}-\mathrm{OH}), 4.62\left(\mathrm{~s}, \mathrm{CH}_{2} \mathrm{CO}\right)$, 4.36-4.32 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}$), $3.65-3.42(15 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{3}\right), 3.22\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right)$, and $1.67\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

Acknowledgements

We are grateful to Professor R. Bonnett (Queen Mary College, London) for useful discussions and Mr. G. Coumbaradis (QMC) for the NMR spectra.

References

1 A. N. Kozyrev, A. F. Mironov, and R. P. Evstigneeva, Proceedings of III Conference on Porphyrin Chemistry (USSR), Samarkand, 1982, p. 37.

2 M. T. Cox, T. T. Howarth, A. H. Jackson, and G. W. Kenner, J. Chem. Soc., Perkin Trans. 1, 1974, 512.
3 G. W. Kenner, S. W. McCombie, and K. M. Smith, J. Chem. Soc., Perkin Trans. 1, 1974, 527.

4 I. A. Chaudhry, P. S. Clezy, and V. Diakiw, Aust. J. Chem., 1977, 30, 879.

5 I. A. Chaudhry, P. S. Clezy, and A. H. Mirza, Aust. J. Chem., 1980, 33, 1095.

6 (a) V. P. Zhestkov, A. F. Mironov, L. A. Ustyniuk, and R. P. Evstigneeva, Bioorg. Khim., 1975, 1, 1673; (b) V. P. Zhestkov, A. F. Mironov, and R. P. Evstigneeva, ibid., 1975, 672.
7 A. F. Mironov, V. D. Rumyantseva, L. I. Fleiderman, and R. P. Evstigneeva, Zh. Obsch. Khim., 1975, 45, 1150.
8 (a) V. M. Bayramov, A. S. Kaledin, G. M. Isaeva, A. F. Mironov, and R. P. Evstigneeva, Zh. Org. Khim., 1978, 14, 857; (b) G. M. Isaeva, V. M. Bayramov, A. F. Mironov, and R. P. Evstigneeva, Bioorg. Khim., 1979, 5, 1544.
9 P. S. Clezy and C. J. R. Fookes, Aust. J. Chem., 1981, 34, 871.
10 M. T. Cox, T. T. Howarth, A. H. Jackson, and G. W. Kenner, J. Am. Chem. Soc., 1969, 91, 1232.
11 G. M. Isaeva and A. F. Mironov, in ref. 1, p. 33.
12 A. N. Nizhnik, A. N. Kozyrev, and A. F. Mironov, Proceedings of XII Mendeleev meeting on Pure and Applied Chemistry (USSR), 1981, p. 688.
13 A. N. Nizhnik, A. N. Kozyrev, and A. F. Mironov, Bioorg. Khim., 1985, 11, 692.
14 P. S. Clezy and V. Diakiw, Aust. J. Chem., 1975, 28, 2703.
Paper 9/02448D
Received 9th June 1989
Accepted 30th October 1989

